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COMMENT 

A comment on the reducibility of the Voigt functions 

Jacob Katriel 
Department of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel 

Received 23 July 1981 

Abstract. An elementary derivation of the expression for the Voigt functions in terms of 
circular functions and confluent hypergeometric functions is presented, correcting some 
errors in Exton’s recent analysis. 

An expression for the Voigt functions 

K(x, Y )  = 7r -‘I2 Iom exp(-yr -a,’) cos(xr) dr 

L(x, y )  = a-’’’ lo exp(-yr - f r 2 )  sin(xr) dr 

(1) 

and 
m 

(2) 

in terms of circular functions and confluent hypergeometric functions was recently 
derived by Exton (1981a). His derivation involves the use of generalised hyper- 
geometric functions. 

An elementary derivation can be obtained by noting that 

K(x, Y)--iUX, Y) 

= 7r-1/2 lom exp[-(y +ix)r-$r2] dr 

= exp[(y + ix12] erfc(y + ix) 

= exp[(y + i ~ ) ~ ] - 2 ( y  +ix)7r-1’21F1(1; 4; (y +ix)2) 

(AS 7.4.2) 

(AS 7.1.2). 

Here (AS a.b.c) stands for identity a.b.c in Abramowitz and Stegun (1965). 
K(x, y), the real part of the above expression, is therefore expressible as 

~ ( x ,  y) = exp(y2-x2) c0~(2xy)-tr-”~[(y +ix) 1 ~ 1 ( 1 ;  4; (y +ix)2) 

+ ( y  -ix) ~ F ~ ( I ;  4; (y - ~ x ) ~ ) I .  

Similarly, for L(x, y )  we obtain 

~ ( x ,  y )  = -exp(y2-x2) sin(2xy)+~-”~[(x +iy) l ~ l ( l ;  4; -(x +iyl2) 

+ (x -iy) l ~ l ( ~ ;  4; -(x - iy~~) ] .  

To write these expressions in a form more similar to Exton’s equations (21) and (22), we 
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note that (y + ix)’ = - ( x  - iy)’, and (y - ix)’ = - ( x  +iy)’, and that 

22 lFl(l;;;z)=lF1(1;3;Z)-l (AS 13.4.6). 

It is clear that our equations ( 5 )  and (6) differ from Exton’s principal results. 
The well known special cases (Haubold and John 1979) 

K ( O ,  ~ ) = e x p ( y ~ ) - ~ - ’ / ~ 2 y  l ~ l ( l ;  5; y2)  

L(0, Y )  = 0 

K ( X ,  0 )  = exp(-x2) 

L(x, 0) = T-ll2 2x 1F1(1; :; - x 2 )  

and 

all agree with our equations ( 5 )  and (6), but except for L(0, y ) ,  they do not agree with 
Exton’s equations (21) and (22), indicating that the latter are not quite correct. 

Exton (1981b) has pointed out that the errors in equations (21) and (22) of Exton 
(1981a) are due to an error in equation (9), there, whose right-hand member should 
read 

2 2  $bz(l;;,;;-x , y  ) -  . . . .  
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